Международная конференция «Математические и информационные технологии, MIT-2011»
(IX конференция «Вычислительные и информационные технологии в науке,
технике и образовании») № гос. регистрации 0321102644, ISBN 978-5-905569-02-9

Врнячка Баня, Сербия, 27–31 августа 2011 г.

Будва, Черногория, 31 августа – 5 сентября 2011 г.

Любанова А.Ш.  

On the identification of the piezo-conductivity coefficient in the pseudoparabolic equation of filtration type

     Pseudoparabolic equations with various differential operators of the even order in spacial variables arise in the mathematical models of the diffusion, the heat conduction and wave processes, in the models for filtration in porous media with the dynamic capillary pressure.
     The report discusses the inverse problem on determination of an unknown coefficient in the second order term of the multi-dimensional linear pseudoparabolic equation of the third order under the initial data and the Dirichlet boundary condition. In the case of the filtration in fissured media, the considered parameter corresponds to the piezo-conductivity of fissured rock and depends on the hydraulic properties of the rock and the liquid.
     The problem is posed in the bounded domain of the space variables with a doubly smooth boundary. It is supposed that the unknown coefficient depends on time variable t. The integral condition of overdetermination on the boundary is taken as additional data for the identification of the unknown coefficient. The assumptions on the input data are formulated wherein the local existence and uniqueness of the solution of the inverse problem is proved.

Файл тезисов: lybanova_abstract_in.doc
Файл с полным текстом: lyubanova_doklad.pdf

К списку докладов

© 1996-2019, Институт вычислительных технологий СО РАН, Новосибирск