XXIV International Conference on Chemical Reactors CHEMREACTOR-24, September 12 - 17, 2021

MAGDEBURG

MAX PLANCK INSTITUTE

TECHNICAL SYSTEMS

FOR DYNAMICS OF COMPLEX

Experimental and model-based study of integrated reactor concepts for the dehydrogenation of propane

<u>A. Brune^{1,3}, J. P. Walter¹, A. Seidel-Morgenstern^{1,2}, C. Hamel^{1,3}</u>

¹Otto von Guericke University, Process Engineering, Magdeburg, Germany; ²Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany ³Anhalt University of Applied Science, Bioscience and Process Engineering, Köthen, Germany

Motivation

 \succ In the last 20 years demand of propylene derivatives, e.g. polypropylene, and propylene oxide, has significantly increased [1].

OTTO VON GUERICKE

UNIVERSITÄT MAGDEBURG

NST

- \succ The main part of the propylene production is gained as side product in crude oil refineries (FCC/RCC) and naphtha steam cracking.
- innovative processes > New dehydrogenation could be

coupling of oxidative (ODH) and thermal dehydrogenation (TDH) in order to improve selectivity and yield [2 - 4].

Conversion	

> Power Law Approach [2]: $r_1 = k_1 \cdot p_{C_3H_8}^{a_1} \cdot p_{O_2}^{b_1}$ $r_2 = k_2 \cdot p_{C_3H_6}^{a_2} \cdot p_{O_2}^{b_2}$ $r_3 = k_3 \cdot p_{C_3H_6}^{a_3} \cdot p_{O_2}^{b_3}$ $r_4 = k_4 \left(\frac{p_{H_2O} p_{CO}}{K_{WGS}} - p_{H_2} p_{CO_2} \right)$ $r_5 = k_5 \cdot p_{C_3 H_8}^{a_5}$ > Experimental Conditions:

- $rac{}{}$ T = 350°C 600°C
- \succ <u>TDH</u>: c_{C3H8} = 1/2/3/4/5%, c_{O2} = 0%
- \blacktriangleright <u>ODH</u>: $c_{C3H8} = 0 1\%$, $c_{O2} = 0 1\%$
- \gg WHSV = 100 400 (kg s)/m³

Kinetics: Coking, Deactivation and Regeneration

TG Analysis

2D-Simulation: Integrated Reactor Concepts

- Netzsch STA 449 F5 Jupiter[®] Modeled as <u>CSTR</u>
- > Propene has been identified as main coke precursor in agreement with literature [3]

Monolayer Multilayer Coke Growth Model (MMCGM)

 $c_{coke} = c_{max} - \left((h-1) \cdot k_1 \cdot c_{C_3 H_6}^l \cdot t + c_{max}^{1-h} \right)^{\frac{1}{1-h}}$

> How is deactivation related to coking? ⇒ Approach of Dumez and Froment [3]

$a_{\cdot} =$	Reaction	Parameter	Op Valu
$\int_{-\infty}^{\infty} 1 + \zeta_j c_{coke}(t) \qquad \Big\langle$	R ₂	ζ_2	0.218
(t) (t) (t)	R ₃	ζ_3	0.164
$r_j(t) = r_j^{\circ} \cdot a_j(t)$	R ₅	ζ_5	1.12

switch of flow direction

Phase ③ Reactor 1: TDH Reactor 2: ODH

- > Operando Regeneration by flow reversal: No deadtimes
- > Less side reactions due to distributed oxygen dosing in membrane reactors

Acknowledgement	References
DFG Project "Kontrolle und Intensivierung von Reaktionen durch Einsatz zyklisch betriebener Distributoren", SE 568/23-1 / HA 6762/2-1	 P. Eisele, R. Killpack, in Ullmann's encyclopedia of industrial chemistry, Vol. 82, Wiley. Chichester 2010. A. Brune, A. Seidel-Morgenstern, C. Hamel, Catalysts 10 (2020) 1374. <u>https://doi.org/10.3390/catal10121374</u>. J.P. Walter, A. Brune, A. Seidel-Morgenstern, C. Hamel, Chem. Ing. Tech. 93 (2021) 819-824. <u>https://doi.org/10.1002/cite.202000227</u> A. Brune, T. Wolff, A. Seidel-Morgenstern, C. Hamel, Chem. Ing. Tech. 56 (2019) 251.<u>https://doi.org/10.1002/cite.201800184</u>.