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Kinetics: Coking, Deactivation and Regeneration

ODH: Δ𝑅𝐻𝑟1 = −𝟏𝟏𝟖 𝑘𝐽 𝑚𝑜𝑙−1

TDH: Δ𝑅𝐻𝑟5 = +𝟏𝟐𝟒 𝑘𝐽 𝑚𝑜𝑙−1

Enthalpy of reaction

Reactor Concepts

Outlook: Experiments in pilot scale 
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Kinetics: Main reactions
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Fixed Bed 
Reactor (FBR)

Membrane 
Reactor (PBMR)

Integrated packed 
bed Membrane 
Reactor (PBMRint)

𝑐𝑐𝑜𝑘𝑒 = 𝑐𝑚𝑎𝑥 − ℎ − 1 ∙ 𝑘1∙ 𝑐𝐶3𝐻6
𝑙 ⋅ 𝑡 + 𝑐𝑚𝑎𝑥

1−ℎ

1
1−ℎ

➢ Propene has been identified as main coke 

precursor in agreement with literature [3]

TG Analysis

➢ Netzsch STA 449 F5 Jupiter
® 

Modeled as CSTR

𝑐𝐶3𝐻6

WHSV = 400 (kg s)/m³ , T
deact

=625°C, TGA

Parameter Opt. Value Unit

𝑐𝑚𝑎𝑥 87.060 %
𝑘𝑔𝑐𝑜𝑘𝑒

𝑘𝑔𝑐𝑎𝑡
× 100

𝛼 0.700 -

𝑘0 9.52 × 107 𝑘𝑔𝑐𝑜𝑘𝑒𝑘𝑔𝑐𝑎𝑡
−1 𝑚𝑖𝑛−1 1−ℎ

𝐸𝐴 106397 𝐽 𝑚𝑜𝑙−1

ℎ 6.401 -

➢ How is deactivation related to coking? 

 Approach of Dumez and Froment [3]

Monolayer Multilayer Coke Growth Model 

(MMCGM)

𝑎𝑗 =
1

1 + 𝜁𝑗𝑐𝑐𝑜𝑘𝑒(𝑡)

Reaction Parameter
Opt. 

Value
Unit 

Confidence 

interval 

R
2

𝜁2 0.2182 %−1 ±2.6 × 10−3%

R
3

𝜁3 0.1645 %−1 ±3.3 × 10−3%

R
5

𝜁5 1.1207 %−1 ±0.5 × 10−3%

2D-Simulation: Integrated Reactor Concepts  

Optimized Parameters

𝑟 =
𝑑𝑚𝐶

𝑑𝑡
= 𝑘 ∙ 𝑚𝐶

𝛼 ∙ 𝜑𝑂2
𝛽

Parameter Opt. value Unit

𝑘0 1.62 × 108 %𝑚𝑖𝑛−1

𝐸𝐴 120835.9 𝐽 𝑚𝑜𝑙−1

𝛼 0.5517 -

𝛽 0.6859 -

Power Law Approach

Optimization

Deactivation: c
C3H8, deact

= 1%; WHSV = 400 (kg s)/m³ , T
deact

=600°C, 

t
deact

=48h, Segment 3, fixed bed reactor

T

Regeneration setup: 

➢ TGA Netzsch STA 

449 F5 Jupiter
®

Deactivation setup: 

➢ Glass reactor, 

6mm ID, 

1.5g catalyst, 

3 segments 

➢ Experimental Setup: Lab scale 

reactor 

➢ Quartz glass, ID 6 mm

➢ Parameter Estimation: Matlab (1-D)

➢ Reactor model: PFTR, steady state, 

no deactivation 

➢ Experimental Conditions:

➢ T = 350°C – 600°C

➢ TDH: c
C3H8

= 1/2/3/4/5%, c
O2

= 0%

➢ ODH: c
C3H8

= 0 - 1%, c
O2

= 0 - 1%

➢ WHSV = 100 – 400 (kg s)/m³

➢ Power Law Approach [2]:

  
     

  
   

Optimization of overall production process

➢ 1D reactor model (MATLAB)

➢ Production cycles including incomplete

regeneration results in more efficient overall 

process 

➢ Consideration of regeneration phase in 

process design leads to more efficient 

processes

    

         

         

Phase ①
Reactor 1: ODH

Reactor 2: TDH

Phase ② + Phase ④
Change of temperatures, 

switch of flow direction

Phase ③
Reactor 1: TDH

Reactor 2: ODH

a) FBR

b) PBMR

c) PBMRint

𝑶𝟐

𝑪𝟑𝑯𝟖

𝑪𝟑𝑯𝟖

𝑶𝟐

𝑪𝟑𝑯𝟖

𝑶𝟐

➢ Distinct radial temperature and concentration 

gradients  Detailed 2D simulations needed for 

reactor concept evaluation 

Choose 
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Choose 
PBMR
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➢ Beneficial production 

regimes for different reactor 

setups can be identified

c
C3H8

= 1%; WHSV = 400 (kg s)/m³ , T=600°C, c
O2

= 5%;

𝑇𝑝𝑟𝑜𝑑 = 550 °𝐶, 𝑐𝐶3𝐻8,𝑖𝑛 = 1%, 𝑐𝑂2,𝑝𝑟𝑜𝑑 = 0%, 𝑇𝑟𝑒𝑔 = 500 °𝐶, 𝑐𝑂2,𝑟𝑒𝑔 = 1%

𝑐𝐶3𝐻8 = 1%, 𝑐𝑂2 = 0.5%, 𝑇𝑅1 = 600 °𝐶, 𝑇𝑅2 = 500 °𝐶

c)

𝑟𝑗 𝑡 = 𝑟𝑗
0 ⋅ 𝑎𝑗 𝑡

𝑐 𝑐
𝑜
𝑘
𝑒
/
%

➢ Operando Regeneration by 

flow reversal: No deadtimes 

➢ Less side reactions due to 

distributed oxygen dosing 

in membrane reactors

Reactor cascade with flow reversal

Flow Reversal Periodic 

➢ In the last 20 years demand of propylene

derivatives, e.g. polypropylene, and propylene

oxide, has significantly increased [1].

➢ The main part of the propylene production is

gained as side product in crude oil refineries

(FCC/RCC) and naphtha steam cracking.

➢ New innovative processes of propane

dehydrogenation could be achieved by

coupling of oxidative (ODH) and thermal

dehydrogenation (TDH) in order to improve

selectivity and yield [2 - 4].

➢ Different process designs, 

integrations and operation modes are 

thinkable which have been studied 

theoretically and experimentally.

➢ ODH (R
1
): exothermic, less 

selective reaction 

Problem: Total and partial 

oxidation (R
2
/R

3
) as side 

reactions due to the 

presence of oxygen

➢ TDH (R
5
): endothermic, highly 

selective reaction 

Problem: Rapid coking of 

the catalyst 

 activity function  a(t) [2]
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