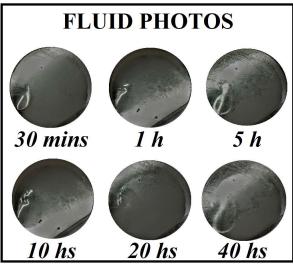
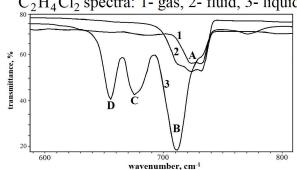

CCl₄ spectra: 1- gas, 2- fluid, 3- liquid

EXPERIMENT

TO GENERATE THIN LAYERS, A VARIABLE THICKNESS OPTICAL CELL SHOWN BELOW WAS USED. THE SUBSTANCE EVAPORATED^(a) FROM A BRANCHED SURFACE^(b) IN A FUNNEL⁽³⁾ INTO THE CELL⁽¹⁾ FOR 2-70 HOURS. THE FUNNEL WAS THEN REPLACED WITH A LUER PLUG⁽²⁾. AFTER THAT, THE CELL WAS COMPRESSED AND EXPANDED

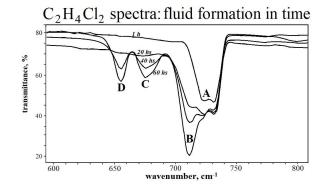


RELEVANCE


THE NEAR-SURFACE AREA THIN LAYERS PLAY AN IMPORTANT ROLE IN CATALYSIS. FLUIDS ARE ALSO DEMANDED IN CATALYSIS DUE TO THEIR SOLUBILITY AND ACTIVITY. OUR ME-THOD ALLOWS TO GENERATE THIN LAYERS OF ORGANIC SOLVENTS WITH VARIABLE GAS-LIOUID PROPERTIES SIMILAR TO FLUID ONES.

OBJECTIVES

1. TO FIX THE FORMATION OF THIN LAYERS BY IR SPECTROSCOPY ANALYTICAL METHODS 2. TO SHOW CHANGES IN PHASE PROPERTIES AND INTERMOLECULAR TRANSFORMATIONS



C₂H₄Cl₂ spectra: 1- gas, 2- fluid, 3- liquid

CONCLUSION

- 1. OUR METHOD ALLOWS TO OBTAIN A THIN FLUID-LIKE LAYER WITH VARIABLE PHASE PROPERTIES. ITS FORMATION AND CHANGES IN IT WERE CONFIRMED BY BOTH VISUAL AND IR SPECTRAL OBSERVATIONS.
- 2. OUR METHOD USES AN ENERGY-EFFICIENT AND RESOURCE-SAVING PHYSICOCHEMICAL PROCESS.
- 3. THIN FLUID-LIKE LAYERS ARE CHEMICALLY ACTIVE DUE TO THEIR ENHANCED INTERMOLECULAR INTERACTIONS.

