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A method for constructing interpolation splines by solving differential multi-
point boundary value problems (DMBVP) with subsequent discretization was
described in [2, 3]. In comparison with the standard algebraic approach [5, 7],
this method does not involve hyperbolic/biharmonic function evaluation, but
requires the solution of a five-diagonal system, which can be ill-conditioned for
unequally spaced data (see [4]). It is shown below that this system can be split
into a set of positive five-diagonal linear ones and admit effective parallelization.

1 1-D Problem Formulation

Suppose that we are given the data

(xi, fi), i = 0, . . . , N + 1, (1)

where a = x0 < x1 < . . . < xN+1 = b. Define

f [xi, xi+1] = (fi+1 − fi)/hi, hi = xi+1 − xi, i = 0, . . . , N.

Data (1) are called monotonically increasing if

f [xi, xi+1] ≥ 0, i = 0, . . . , N,

and are called convex if

f [xi, xi+1] ≥ f [xi−1, xi], i = 1, . . . , N.

The shape preserving interpolation problem consists in constructing a suffi-
ciently smooth function S such that S(xi) = fi for i = 0, . . . , N + 1 and S is
monotone/convex on the intervals of monotonicity/convexity of the input data.

Obviously, the solution to the shape preserving interpolation problem is not
unique. We seek it in the form of a hyperbolic tension spline.

Definition 1. The hyperbolic interpolation spline S with the set of tension pa-
rameters {pi ≥ 0 | i = 0, . . . , N} is defined as the solution to the DMBVP

d4S
dx4

−
(

pi

hi

)2
d2S
dx2

= 0 for all x ∈ (xi, xi+1), i = 0, . . . , N, (2)
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S ∈ C2[a, b] (3)

with the interpolation conditions

S(xi) = fi, i = 0, . . . , N + 1 (4)

and the boundary conditions

S′′(a) = f ′′0 and S′′(b) = f ′′N+1. (5)

Boundary conditions (5) are used for simplicity. They can be replaced by
boundary conditions of other types [3].

The second derivative values in the endpoint conditions (5) must be adjusted
to the behaviour of the data. Otherwise we can obtain an incompatibility with
the shape preserving restrictions [3]. For example, we can use the restrictions

f ′′0 f [x0, x1, x2] ≥ 0, f ′′N+1f [xN−1, xN , xN+1] ≥ 0.

If we set pi = 0 for all i in (2), then the solution to problem (2)–(5) is a cubic
spline of the class C2, which gives a smooth curve but does not always preserve
the monotonicity/convexity of the input data. In the limit as pi →∞, we obtain
a polygonal line that is shape preserving for the input data but is not smooth. In
standard algorithms for automatic selection of the shape parameters pi (see [3]),
the latter are chosen so that the resulting curve is as much similar to a cubic
spline as possible and simultaneously preserves the monotonicity/convexity of
the input data.

2 Finite Difference Approximation

Consider the discretization of the DMBVP formulated. For this purpose, on each
subinterval [xi, xi+1], we introduce an additional nonuniform mesh

xi,−1 < xi = xi,0 < xi,1 < · · · < xi,ni = xi+1 < xi,ni+1, ni ∈ IN

with the steps hij = xi,j+1 − xij , j = −1, . . . , ni, i = 0, . . . , N . We search for a
mesh function

{ uij , j = −1, . . . , ni + 1, i = 0, . . . , N },
satisfying the difference equations

24u[xi,j−2, . . . , xi,j+2]− 2
( pi

hi

)2

u[xi,j−1, xij , xi,j+1] = 0,

j = 1, . . . , ni − 1, i = 0, . . . , N. (6)

The approximation of smoothness conditions (3) gives the relations

ui−1,ni−1 = ui,0,

D1
i−1,ni−1

ui−1,ni−1 = D1
i,0ui,0, i = 1, . . . , N, (7)

D2
i−1,ni−1

ui−1,ni−1 = D2
i,0ui,0,
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where

D1
ijuij = λiju[xi,j−1, xij ] + (1− λij)u[xij , xi,j+1],

D2
ijuij = 2u[xi,j−1, xij , xi,j+1], λij = hij/(hi,j−1 + hij).

Conditions (4) and (5) are transformed into

ui,0 = fi, i = 0, . . . , N, uN,nN = fN+1 (8)

and
u[x0,−1, x0,0, x0,1] = f ′′0 , u[xN,nN−1, xN,nN

, xN,nN+1] = f ′′N+1. (9)

Relations (7) and boundary conditions (9) make it possible to eliminate the
“extra” unknowns ui,−1 and ui,ni+1, i = 0, . . . , N . To show this we use the
notation

Mi = 2u[xi−1,ni−1−1, xi−1,ni−1 , xi−1,ni−1+1] = 2u[xi,−1, xi,0, xi,1].

Multiplying these equalities by hi−1,ni−1−1/2 and hi,0/2, respectively, we rewrite
them in the form

D1
i−1,ni−1

ui−1,ni−1 = u[xi−1,ni−1−1, xi−1,ni−1 ] +
hi−1,ni−1−1

2
Mi,

D1
i,0ui,0 = u[xi,0, xi,1]− hi,0

2
Mi.

Using the second equality in (7) we obtain

Mi = 2u[xi−1,ni−1−1, xi,0, xi,1], i = 1, . . . , N. (10)

Thus the second divided differences in the equations (6) of the form

u[xi−1,ni−1−1, xi−1,ni−1xi−1,ni−1+1] and u[xi,−1, xi,0, xi,1]

can be replaced by u[xi−1,ni−1−1, xi,0, xi,1]. This permits us to eliminate the un-
knowns ui−1,ni−1+1 and ui,−1, i = 1, . . . , N . The unknowns u0,−1 and uN,nN+1

are eliminated from boundary conditions (9). The discrete mesh solution is de-
fined as

{ uij , j = 0, . . . , ni, i = 0, . . . , N }. (11)

The existence and uniqueness conditions of a solution to linear system (6)–(9)
will be obtained below.

3 Parallel Algorithm for Five-Diagonal System

Let us consider the quasiuniform mesh which is uniform separately on each
interval [xi, xi+1], i = 0, . . . , N , i.e. hij = τi for j = −1, . . . , ni. In this case the
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system (6)–(9) after eliminating the unknowns ui,−1, ui,ni+1, i = 0, . . . , N takes
the form

Au = b, (12)

where

u = (u0,1, . . . , u0,n0−1, u1,1, . . . , u2,1, . . . , uN,1, . . . , uN,nN−1)T ,

b = (−(a0 + 2)f0 − τ2
0 f ′′0 ,−f0, 0, . . . , 0,−f1,−γ0,n0−1f1,−γ1,1f1,

,−f1, 0, . . . , 0,−fN+1,−(aN + 2)fN+1 − τ2
Nf ′′N+1)

T

with

γi−1,ni−1−1 = ai−1 + 2
ρi − 1

ρi
, γi,1 = ai + 2(1− ρi), i = 1, . . . , N

and A is the following five-diagonal matrix



b0 − 1 a0 1
a0 b0 a0 1
1 a0 b0 a0 1

. . .
1 a0 b0 a0

1 a0 η0,n0−1 δ0,n0−1

δ1,1 η1,1 a1 1
a1 b1 a1 1

. . .
1 aN bN aN 1

1 aN bN aN

1 aN bN − 1




with

ai = −(4 + ωi) , bi = 6 + 2ωi , ωi =
(

pi

ni

)2

; i = 0, . . . , N,

ηi−1,ni−1−1 = bi−1 +
1− ρi

1 + ρi
, ηi,1 = bi +

ρi − 1
ρi + 1

, ρi =
τi

τi−1
,

δi−1,ni−1−1 =
2

ρi(ρi + 1)
, δi,1 = 2

ρ2
i

ρi + 1
, i = 1, . . . , N.

In [3] the system (12) is solved using five-diagonal Gaussian elimination. In
the general case for unequally spaced data this system may be ill-conditioned [4].
To avoid this problem let us consider a parallel algorithm of Gaussian elimination
for the solution of the system (12) based on approach [6].

We cancel equations of the system (12) which are most close to the data
points xi or more precisely the equations

(b0 − 1)u0,1 + a0u0,2 + u0,3 = −(a0 + 2)f0 − τ2
0 f ′′0 ,
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ui−1,ni−1−3 + ai−1ui−1,ni−1−2 + ηi−1,ni−1−1ui−1,ni−1−1

+δi−1,ni−1−1ui,1 = −γi−1,ni−1−1fi, (13)
δi,1ui−1,ni−1−1 + ηi,1ui,1 + aiui,2 + ui,3 = −γi,1fi, i = 1, . . . , N,

uN,nN−3 + aNuN,nN−2 + (bN − 1)uN,nN−1 = −(aN + 2)fN+1 − τ2
Nf ′′N+1.

Let numbers u
(0)
i,1 , u

(0)
i,ni−1, i = 0, . . . , N , be given which correspond to the

removed equations. The system (12) is split in N + 1 subsystems

ui,0 = fi, ui,1 = u
(0)
i,1 ,

ui,j−2 + aiui,j−1 + biuij + aiui,j+1 + ui,j+2 = 0, j = 2, . . . , ni − 2, (14)

ui,ni−1 = u
(0)
i,ni−1, ui,ni = fi+1 .

Let us show that the obtained systems have a unique solution which can be
found by usual five-diagonal Gaussian elimination.

We rewrite the system (14) as

Aiui = fi,

where

ui = (ui,2, ui,3, . . . , ui,ni−2)T ,

fi = (−aiu
(0)
i,1 − fi,−u

(0)
i,1 , 0, . . . , 0,−u

(0)
i,ni−1,−aiu

(0)
i,ni−1 − fi+1)T .

The matrix Ai is symmetric. We observe that

Ai = Ci + Di, Ci = B2
i − ωiBi,

where

Bi =




−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




, Di =




1
0

. . .
0

1




.

Since,

λj(Bi) = −2
(
1− cos

jπ

mi

)
, j = 1, . . . , mi − 1, mi = ni − 2,

we have

λj(Ci) = 4
(
1− cos

jπ

mi

)2

+ 2ωi

(
1− cos

jπ

mi

)
, j = 1, . . . , mi − 1.

In addition, the eigenvalues of Di are 0 and 1, thus we deduce from a corollary of
the Courant-Fisher theorem [1] that the eigenvalues of Ai satisfy the following
inequalities

λj(Ai) ≥ λj(Ci) ≥ 4
(
1− cos

π

mi

)2

+ 2ωi

(
1− cos

π

mi

)
.
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Hence, Ai is a positive matrix and we directly obtain that the five-diagonal linear
system has a unique solution which can be stably found by usual five-diagonal
Gaussian elimination [1].

We obtain a solution u
(0)
ij , j = 0, . . . , ni, i = 0, . . . , N .

Using equations (13) let us recalculate the scalars u
(0)
i,1 , u

(0)
i,ni−1, i = 0, . . . , N .

For i = 1, . . . , N we find

u
(1)
i−1,ni−1−1 =

1
∆i

(
ηi,1F

(0)
i,1 − δi−1,ni−1−1F

(0)
i,2

)
,

u
(1)
i,1 =

1
∆i

(− δi,1F
(0)
i,1 + ηi−1,ni−1−1F

(0)
i,2

)
,

where

F
(0)
i,1 = −γi−1,ni−1−1fi − ai−1u

(0)
i−1,ni−1−2 − u

(0)
i−1,ni−1−3,

F
(0)
i,2 = −γi,1fi − aiu

(0)
i,2 − u

(0)
i,3 ,

∆i = bi−1bi + (bi − bi−1)
1− ρi

1 + ρi
− 1.

From first and last equations of the system (13) we calculate

u
(1)
0,1 =

1
1− b0

(
(a0 + 2)f0 + τ2

0 f ′′0 + a0u
(0)
0,2 + u

(0)
0,3

)
,

u
(1)
N,nN−1 =

1
1− bN

(
(aN + 2)fN+1 + τ2

Nf ′′N+1 + aNu
(0)
N,nN−2 + u

(0)
N,nN−3

)
.

Solving repeatedly the system (14) we obtain a solution u
(1)
ij , j = 0, . . . , ni,

i = 0, . . . , N , etc. The calculations show that this algorithm is convergent.
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