Differential Approach in Spline Theory

Boris Kvasov*
Institute of Computational Technologies, Russian Academy of Sciences
Lavrentyev Avenue 6, Novosibirsk, 630090 Russia
email: kvasov@ict.nsc.ru

A method for constructing interpolation splines by solving differential multipoint boundary value problems (DMBVP) with subsequent discretization was described in $[2,3]$. In comparison with the standard algebraic approach $[5,7]$, this method does not involve hyperbolic/biharmonic function evaluation, but requires the solution of a five-diagonal system, which can be ill-conditioned for unequally spaced data (see [4]). It is shown below that this system can be split into a set of positive five-diagonal linear ones and admit effective parallelization.

1 1-D Problem Formulation

Suppose that we are given the data

$$
\begin{equation*}
\left(x_{i}, f_{i}\right), \quad i=0, \ldots, N+1 \tag{1}
\end{equation*}
$$

where $a=x_{0}<x_{1}<\ldots<x_{N+1}=b$. Define

$$
f\left[x_{i}, x_{i+1}\right]=\left(f_{i+1}-f_{i}\right) / h_{i}, \quad h_{i}=x_{i+1}-x_{i}, \quad i=0, \ldots, N
$$

Data (1) are called monotonically increasing if

$$
f\left[x_{i}, x_{i+1}\right] \geq 0, \quad i=0, \ldots, N
$$

and are called convex if

$$
f\left[x_{i}, x_{i+1}\right] \geq f\left[x_{i-1}, x_{i}\right], \quad i=1, \ldots, N
$$

The shape preserving interpolation problem consists in constructing a sufficiently smooth function S such that $S\left(x_{i}\right)=f_{i}$ for $i=0, \ldots, N+1$ and S is monotone/convex on the intervals of monotonicity/convexity of the input data.

Obviously, the solution to the shape preserving interpolation problem is not unique. We seek it in the form of a hyperbolic tension spline.

Definition 1. The hyperbolic interpolation spline S with the set of tension parameters $\left\{p_{i} \geq 0 \mid i=0, \ldots, N\right\}$ is defined as the solution to the DMBVP

$$
\begin{equation*}
\frac{d^{4} \mathrm{~S}}{d x^{4}}-\left(\frac{p_{i}}{h_{i}}\right)^{2} \frac{d^{2} \mathrm{~S}}{d x^{2}}=0 \quad \text { for all } \quad x \in\left(x_{i}, x_{i+1}\right), \quad i=0, \ldots, N \tag{2}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\mathrm{S} \in C^{2}[a, b] \tag{3}
\end{equation*}
$$

\]

with the interpolation conditions

$$
\begin{equation*}
\mathrm{S}\left(x_{i}\right)=f_{i}, \quad i=0, \ldots, N+1 \tag{4}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
\mathrm{S}^{\prime \prime}(a)=f_{0}^{\prime \prime} \quad \text { and } \quad \mathrm{S}^{\prime \prime}(b)=f_{N+1}^{\prime \prime} . \tag{5}
\end{equation*}
$$

Boundary conditions (5) are used for simplicity. They can be replaced by boundary conditions of other types [3].

The second derivative values in the endpoint conditions (5) must be adjusted to the behaviour of the data. Otherwise we can obtain an incompatibility with the shape preserving restrictions [3]. For example, we can use the restrictions

$$
f_{0}^{\prime \prime} f\left[x_{0}, x_{1}, x_{2}\right] \geq 0, \quad f_{N+1}^{\prime \prime} f\left[x_{N-1}, x_{N}, x_{N+1}\right] \geq 0
$$

If we set $p_{i}=0$ for all i in (2), then the solution to problem (2)-(5) is a cubic spline of the class C^{2}, which gives a smooth curve but does not always preserve the monotonicity/convexity of the input data. In the limit as $p_{i} \rightarrow \infty$, we obtain a polygonal line that is shape preserving for the input data but is not smooth. In standard algorithms for automatic selection of the shape parameters p_{i} (see [3]), the latter are chosen so that the resulting curve is as much similar to a cubic spline as possible and simultaneously preserves the monotonicity/convexity of the input data.

2 Finite Difference Approximation

Consider the discretization of the DMBVP formulated. For this purpose, on each subinterval $\left[x_{i}, x_{i+1}\right]$, we introduce an additional nonuniform mesh

$$
x_{i,-1}<x_{i}=x_{i, 0}<x_{i, 1}<\cdots<x_{i, n_{i}}=x_{i+1}<x_{i, n_{i}+1}, \quad n_{i} \in \mathbb{N}
$$

with the steps $h_{i j}=x_{i, j+1}-x_{i j}, j=-1, \ldots, n_{i}, i=0, \ldots, N$. We search for a mesh function

$$
\left\{u_{i j}, j=-1, \ldots, n_{i}+1, i=0, \ldots, N\right\}
$$

satisfying the difference equations

$$
\begin{array}{r}
24 u\left[x_{i, j-2}, \ldots, x_{i, j+2}\right]-2\left(\frac{p_{i}}{h_{i}}\right)^{2} u\left[x_{i, j-1}, x_{i j}, x_{i, j+1}\right]=0 \\
j=1, \ldots, n_{i}-1, \quad i=0, \ldots, N . \tag{6}
\end{array}
$$

The approximation of smoothness conditions (3) gives the relations

$$
\begin{align*}
u_{i-1, n_{i-1}} & =u_{i, 0} \\
D_{i-1, n_{i-1}}^{1} u_{i-1, n_{i-1}} & =D_{i, 0}^{1} u_{i, 0}, \quad i=1, \ldots, N, \tag{7}\\
D_{i-1, n_{i-1}}^{2} u_{i-1, n_{i-1}} & =D_{i, 0}^{2} u_{i, 0}
\end{align*}
$$

where

$$
\begin{aligned}
& D_{i j}^{1} u_{i j}=\lambda_{i j} u\left[x_{i, j-1}, x_{i j}\right]+\left(1-\lambda_{i j}\right) u\left[x_{i j}, x_{i, j+1}\right] \\
& D_{i j}^{2} u_{i j}=2 u\left[x_{i, j-1}, x_{i j}, x_{i, j+1}\right], \quad \lambda_{i j}=h_{i j} /\left(h_{i, j-1}+h_{i j}\right)
\end{aligned}
$$

Conditions (4) and (5) are transformed into

$$
\begin{equation*}
u_{i, 0}=f_{i}, \quad i=0, \ldots, N, \quad u_{N, n_{N}}=f_{N+1} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
u\left[x_{0,-1}, x_{0,0}, x_{0,1}\right]=f_{0}^{\prime \prime}, \quad u\left[x_{N, n_{N}-1}, x_{N, n_{N}}, x_{N, n_{N}+1}\right]=f_{N+1}^{\prime \prime} \tag{9}
\end{equation*}
$$

Relations (7) and boundary conditions (9) make it possible to eliminate the "extra" unknowns $u_{i,-1}$ and $u_{i, n_{i}+1}, i=0, \ldots, N$. To show this we use the notation

$$
M_{i}=2 u\left[x_{i-1, n_{i-1}-1}, x_{i-1, n_{i-1}}, x_{i-1, n_{i-1}+1}\right]=2 u\left[x_{i,-1}, x_{i, 0}, x_{i, 1}\right] .
$$

Multiplying these equalities by $h_{i-1, n_{i-1}-1} / 2$ and $h_{i, 0} / 2$, respectively, we rewrite them in the form

$$
\begin{aligned}
& D_{i-1, n_{i-1}}^{1} u_{i-1, n_{i-1}}=u\left[x_{i-1, n_{i-1}-1}, x_{i-1, n_{i-1}}\right]+\frac{h_{i-1, n_{i-1}-1}}{2} M_{i} \\
& D_{i, 0}^{1} u_{i, 0}=u\left[x_{i, 0}, x_{i, 1}\right]-\frac{h_{i, 0}}{2} M_{i}
\end{aligned}
$$

Using the second equality in (7) we obtain

$$
\begin{equation*}
M_{i}=2 u\left[x_{i-1, n_{i-1}-1}, x_{i, 0}, x_{i, 1}\right], \quad i=1, \ldots, N \tag{10}
\end{equation*}
$$

Thus the second divided differences in the equations (6) of the form

$$
u\left[x_{i-1, n_{i-1}-1}, x_{i-1, n_{i-1}} x_{i-1, n_{i-1}+1}\right] \quad \text { and } \quad u\left[x_{i,-1}, x_{i, 0}, x_{i, 1}\right]
$$

can be replaced by $u\left[x_{i-1, n_{i-1}-1}, x_{i, 0}, x_{i, 1}\right]$. This permits us to eliminate the unknowns $u_{i-1, n_{i-1}+1}$ and $u_{i,-1}, i=1, \ldots, N$. The unknowns $u_{0,-1}$ and $u_{N, n_{N}+1}$ are eliminated from boundary conditions (9). The discrete mesh solution is defined as

$$
\begin{equation*}
\left\{u_{i j}, j=0, \ldots, n_{i}, i=0, \ldots, N\right\} \tag{11}
\end{equation*}
$$

The existence and uniqueness conditions of a solution to linear system (6)-(9) will be obtained below.

3 Parallel Algorithm for Five-Diagonal System

Let us consider the quasiuniform mesh which is uniform separately on each interval $\left[x_{i}, x_{i+1}\right], i=0, \ldots, N$, i.e. $h_{i j}=\tau_{i}$ for $j=-1, \ldots, n_{i}$. In this case the
system (6)-(9) after eliminating the unknowns $u_{i,-1}, u_{i, n_{i}+1}, i=0, \ldots, N$ takes the form

$$
\begin{equation*}
\mathbf{A} \mathbf{u}=\mathbf{b} \tag{12}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathbf{u}=\left(u_{0,1}, \ldots, u_{0, n_{0}-1}, u_{1,1}, \ldots, u_{2,1}, \ldots, u_{N, 1}, \ldots, u_{N, n_{N}-1}\right)^{T} \\
\mathbf{b}=\left(-\left(a_{0}+2\right) f_{0}-\tau_{0}^{2} f_{0}^{\prime \prime},-f_{0}, 0, \ldots, 0,-f_{1},-\gamma_{0, n_{0}-1} f_{1},-\gamma_{1,1} f_{1}\right. \\
\left.,-f_{1}, 0, \ldots, 0,-f_{N+1},-\left(a_{N}+2\right) f_{N+1}-\tau_{N}^{2} f_{N+1}^{\prime \prime}\right)^{T}
\end{gathered}
$$

with

$$
\gamma_{i-1, n_{i-1}-1}=a_{i-1}+2 \frac{\rho_{i}-1}{\rho_{i}}, \quad \gamma_{i, 1}=a_{i}+2\left(1-\rho_{i}\right), \quad i=1, \ldots, N
$$

and \mathbf{A} is the following five-diagonal matrix

$$
\left[\begin{array}{ccccccccccccc}
b_{0}-1 & a_{0} & 1 & & & & & & & & & & \\
a_{0} & b_{0} & a_{0} & 1 & & & & & & & & \\
1 & a_{0} & b_{0} & a_{0} & 1 & & & & & & & \\
& & & \cdots & & & & & & & & \\
& & 1 & a_{0} & b_{0} & a_{0} & & & & & & \\
& & & 1 & a_{0} & \eta_{0, n_{0}-1} \delta_{0, n_{0}-1} & & & & \\
& & & & & \delta_{1,1} & \eta_{1,1} & a_{1} & 1 & & & \\
& & & & & & a_{1} & b_{1} & a_{1} & 1 & & \\
& & & & & & & & & \cdots & & & \\
& & & & & & & 1 & a_{N} & b_{N} & a_{N} & 1 \\
& & & & & & & & & 1 & a_{N} & b_{N} & a_{N} \\
& & & & & & & & & 1 & a_{N} & b_{N}-1
\end{array}\right]
$$

with

$$
\begin{aligned}
& a_{i}=-\left(4+\omega_{i}\right), b_{i}=6+2 \omega_{i}, \omega_{i}=\left(\frac{p_{i}}{n_{i}}\right)^{2} ; \quad i=0, \ldots, N \\
& \eta_{i-1, n_{i-1}-1}=b_{i-1}+\frac{1-\rho_{i}}{1+\rho_{i}}, \eta_{i, 1}=b_{i}+\frac{\rho_{i}-1}{\rho_{i}+1}, \quad \rho_{i}=\frac{\tau_{i}}{\tau_{i-1}} \\
& \delta_{i-1, n_{i-1}-1}=\frac{2}{\rho_{i}\left(\rho_{i}+1\right)}, \delta_{i, 1}=2 \frac{\rho_{i}^{2}}{\rho_{i}+1}, \quad i=1, \ldots, N .
\end{aligned}
$$

In [3] the system (12) is solved using five-diagonal Gaussian elimination. In the general case for unequally spaced data this system may be ill-conditioned [4]. To avoid this problem let us consider a parallel algorithm of Gaussian elimination for the solution of the system (12) based on approach [6].

We cancel equations of the system (12) which are most close to the data points x_{i} or more precisely the equations

$$
\left(b_{0}-1\right) u_{0,1}+a_{0} u_{0,2}+u_{0,3}=-\left(a_{0}+2\right) f_{0}-\tau_{0}^{2} f_{0}^{\prime \prime}
$$

$$
\begin{align*}
& u_{i-1, n_{i-1}-3}+a_{i-1} u_{i-1, n_{i-1}-2}+\eta_{i-1, n_{i-1}-1} u_{i-1, n_{i-1}-1} \\
&+\delta_{i-1, n_{i-1}-1} u_{i, 1}=-\gamma_{i-1, n_{i-1}-1} f_{i} \tag{13}\\
& \delta_{i, 1} u_{i-1, n_{i-1}-1}+\eta_{i, 1} u_{i, 1}+a_{i} u_{i, 2}+u_{i, 3}=-\gamma_{i, 1} f_{i}, \quad i=1, \ldots, N \\
& u_{N, n_{N}-3}+a_{N} u_{N, n_{N}-2}+\left(b_{N}-1\right) u_{N, n_{N}-1}=-\left(a_{N}+2\right) f_{N+1}-\tau_{N}^{2} f_{N+1}^{\prime \prime} .
\end{align*}
$$

Let numbers $u_{i, 1}^{(0)}, u_{i, n_{i}-1}^{(0)}, i=0, \ldots, N$, be given which correspond to the removed equations. The system (12) is split in $N+1$ subsystems

$$
\begin{gather*}
u_{i, 0}=f_{i}, \quad u_{i, 1}=u_{i, 1}^{(0)} \\
u_{i, j-2}+a_{i} u_{i, j-1}+b_{i} u_{i j}+a_{i} u_{i, j+1}+u_{i, j+2}=0, \quad j=2, \ldots, n_{i}-2 \tag{14}\\
u_{i, n_{i}-1}=u_{i, n_{i}-1}^{(0)}, \quad u_{i, n_{i}}=f_{i+1}
\end{gather*}
$$

Let us show that the obtained systems have a unique solution which can be found by usual five-diagonal Gaussian elimination.

We rewrite the system (14) as

$$
\mathbf{A}_{i} \mathbf{u}_{i}=\mathbf{f}_{i},
$$

where

$$
\begin{aligned}
\mathbf{u}_{i} & =\left(u_{i, 2}, u_{i, 3}, \ldots, u_{i, n_{i}-2}\right)^{T} \\
\mathbf{f}_{i} & =\left(-a_{i} u_{i, 1}^{(0)}-f_{i},-u_{i, 1}^{(0)}, 0, \ldots, 0,-u_{i, n_{i}-1}^{(0)},-a_{i} u_{i, n_{i}-1}^{(0)}-f_{i+1}\right)^{T} .
\end{aligned}
$$

The matrix \mathbf{A}_{i} is symmetric. We observe that

$$
\mathbf{A}_{i}=\mathbf{C}_{i}+\mathbf{D}_{i}, \quad \mathbf{C}_{i}=\mathbf{B}_{i}^{2}-\omega_{i} \mathbf{B}_{i},
$$

where

$$
\mathbf{B}_{i}=\left(\begin{array}{ccccc}
-2 & 1 & & & \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
& & & 1 & -2
\end{array}\right), \quad \mathbf{D}_{i}=\left(\begin{array}{ccccc}
1 & & & & \\
& 0 & & & \\
& & \ddots & & \\
& & & 0 & \\
& & & 1
\end{array}\right)
$$

Since,

$$
\lambda_{j}\left(\mathbf{B}_{i}\right)=-2\left(1-\cos \frac{j \pi}{m_{i}}\right), \quad j=1, \ldots, m_{i}-1, \quad m_{i}=n_{i}-2
$$

we have

$$
\lambda_{j}\left(\mathbf{C}_{i}\right)=4\left(1-\cos \frac{j \pi}{m_{i}}\right)^{2}+2 \omega_{i}\left(1-\cos \frac{j \pi}{m_{i}}\right), \quad j=1, \ldots, m_{i}-1
$$

In addition, the eigenvalues of \mathbf{D}_{i} are 0 and 1 , thus we deduce from a corollary of the Courant-Fisher theorem [1] that the eigenvalues of \mathbf{A}_{i} satisfy the following inequalities

$$
\lambda_{j}\left(\mathbf{A}_{i}\right) \geq \lambda_{j}\left(\mathbf{C}_{i}\right) \geq 4\left(1-\cos \frac{\pi}{m_{i}}\right)^{2}+2 \omega_{i}\left(1-\cos \frac{\pi}{m_{i}}\right)
$$

Hence, \mathbf{A}_{i} is a positive matrix and we directly obtain that the five-diagonal linear system has a unique solution which can be stably found by usual five-diagonal Gaussian elimination [1].

We obtain a solution $u_{i j}^{(0)}, j=0, \ldots, n_{i}, i=0, \ldots, N$.
Using equations (13) let us recalculate the scalars $u_{i, 1}^{(0)}, u_{i, n_{i}-1}^{(0)}, i=0, \ldots, N$. For $i=1, \ldots, N$ we find

$$
\begin{aligned}
u_{i-1, n_{i-1}-1}^{(1)} & =\frac{1}{\Delta_{i}}\left(\eta_{i, 1} F_{i, 1}^{(0)}-\delta_{i-1, n_{i-1}-1} F_{i, 2}^{(0)}\right), \\
u_{i, 1}^{(1)} & =\frac{1}{\Delta_{i}}\left(-\delta_{i, 1} F_{i, 1}^{(0)}+\eta_{i-1, n_{i-1}-1} F_{i, 2}^{(0)}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
F_{i, 1}^{(0)} & =-\gamma_{i-1, n_{i-1}-1} f_{i}-a_{i-1} u_{i-1, n_{i-1}-2}^{(0)}-u_{i-1, n_{i-1}-3}^{(0)}, \\
F_{i, 2}^{(0)} & =-\gamma_{i, 1} f_{i}-a_{i} u_{i, 2}^{(0)}-u_{i, 3}^{(0)} \\
\Delta_{i} & =b_{i-1} b_{i}+\left(b_{i}-b_{i-1}\right) \frac{1-\rho_{i}}{1+\rho_{i}}-1 .
\end{aligned}
$$

From first and last equations of the system (13) we calculate

$$
\begin{aligned}
u_{0,1}^{(1)} & =\frac{1}{1-b_{0}}\left(\left(a_{0}+2\right) f_{0}+\tau_{0}^{2} f_{0}^{\prime \prime}+a_{0} u_{0,2}^{(0)}+u_{0,3}^{(0)}\right), \\
u_{N, n_{N}-1}^{(1)} & =\frac{1}{1-b_{N}}\left(\left(a_{N}+2\right) f_{N+1}+\tau_{N}^{2} f_{N+1}^{\prime \prime}+a_{N} u_{N, n_{N}-2}^{(0)}+u_{N, n_{N}-3}^{(0)}\right) .
\end{aligned}
$$

Solving repeatedly the system (14) we obtain a solution $u_{i j}^{(1)}, j=0, \ldots, n_{i}$, $i=0, \ldots, N$, etc. The calculations show that this algorithm is convergent.

References

1. G.H. Golub and C.F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, 1996.
2. N.N. Janenko and B.I. Kvasov, An iterative method for the construction of polycubic spline functions, Soviet Math. Dokl. 11 (1970), 1643-1645.
3. B.I. Kvasov, Methods of Shape-Preserving Spline Approximation, World Scientific Publishing Co. Pte. Ltd., Singapore, 2000.
4. M. Rogina and S. Singer, Conditions of matrices in discrete tension spline approximations of DMBVP, Ann. Univ. Ferrara 53 (2007) 393-404.
5. H. Späth, One Dimensional Spline Interpolation Algorithms, A K Peters, Wellesley, MA, 1995.
6. N.N. Yanenko, A.N. Konovalov, A.N. Bugrov, G.V. Shustov, Organization of parallel computations and parallelization of Gaussian elimination, Numerical Methods in Continuum Mechanics, 9 (1978) 139-146 (in Russian).
7. Yu.S. Zav'yalov, B.I. Kvasov, V.L. Miroshnichenko, Methods of Spline Functions, Nauka, Moscow, 1980 (in Russian).

[^0]: * Supported by grant 09-01-00186 of the Russian Foundation for Basic Research.

