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Introduction

The subject of investigation is

one recently arised quadratic Euclidean clustering problem.

The goal is

to analyze the computational complexity of this problem and construct
an algorithm for it solution.

The research is motivated by

poor research record on the problem and its relevance to many
applications, in particular, to
(1) Geometric, approximation and statistical problems;

(2) Data clustering, Data mining, Machine learning, Big data;

(3) Applied problems in technical and medical diagnostics, remote
monitoring, biometrics, bioinformatics, econometrics, criminology,
processing of experimental data, processing and recognition of signals,
etc.
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Introduction

One of the well-known (Fisher, 1958) data analysis problems is the MSSC
(Minimum Sum-of-Squares Clustering) problem which is strongly
NP-hard (AloiseD., DeshpandeA., HansenP., Popat P., 2009) and has
the following formulation.

MSSC Problem (Minimum Sum-of-Squares Clustering)

Given a set Y = {y1, . . . , yN} of points from Rq and positive integer
J > 1.
Find a partition of Y into non-empty clusters {C1, . . . , CJ} such that

J∑
j=1

∑
y∈Cj

‖y − y(Cj)‖2 → min,

where y(Cj) = 1
|Cj |

∑
y∈Cj

y is the centroid (geometrical center) of Cj .
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Introduction

MSSC Problem. Two-dimensional example

Alexander Kel'manov On some clustering problems 5 / 21



1. Problem formulation, interpretation, closely related
problems, known and our results

Problem 1 (Subset of points with the largest cardinality under a
constraint on the total quadratic variation)

Given a set Y = {y1, . . . , yN} of points from Rq and number α ∈ (0, 1).
Find a subset C ⊂ Y with the largest cardinality such that

F (C) =
∑
y∈C
‖y − y(C)‖2 ≤ α

∑
y∈Y
‖y − y(Y)‖2

where y(C) = 1
|C|

∑
y∈C y is the centroid (the geometrical center) of the

subset C, and y(Y) = 1
|Y|

∑
y∈Y y is the centroid of the input set.
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1. Problem formulation, interpretation, closely related
problems, known and our results

Two-dimensional examples of the input sets

Example 1 Example 2

The problem has a simple interpretation, namely, searching for the largest
by cardinality subset C of points, whose total quadratic deviation from
the unknown centroid y(C) doesn't exceed the total quadratic deviation
of the input set Y from its centroid y(Y) multiplied by α.
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1. Problem formulation, interpretation, closely related
problems, known and our results

Currently, there are no available algorithmic results for Problem 1. Some
results are known for closest problem related to Problem 1, that is for

Problem 2 (M-Variance problem)

Given a set Y = {y1, . . . , yN} of points from Rq and positive integer
number M > 1.
Find a subset C ⊂ Y of cardinality M such that

F (C) =
∑
y∈C
‖y − y(C)‖2 −→ min

Known results for M-Variance problem

1. The strong NP-hardness of the problem
(Kel'manov and Pyatkin, 2010).

2. An exact algorithm with O(qNq+1) running time,
Aggarwal, Imai, Katoh, Suri (1991), Shenmaier, 2016.
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1. Problem formulation, interpretation, closely related
problems, known and our results

Known results for M-Variance problem

3. A 2-approximation polynomial-time algorithm, O(qN2),
Kel'manov, Romanchenko (2012).

4. An exact algorithm for the integer-valued variant of the data input. In
the case of �xed space dimension the algorithm has O(N(MB)q) running
time, where B is the maximum absolute value of the coordinates of the
input points,
Kel'manov, Romanchenko (2012).

5. PTAS of complexity O(qN2/ε+1(9/ε)3/ε), where ε is a guaranteed
relative error,
Shenmaier (2012).

6. (1+ ε)-Approximation algorithm, which implements an FPTAS with
O(N2(M/ε)q)-time complexity, in the case of �xed space dimension,
Kel'manov, Romanchenko (2014).
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1. Problem formulation, interpretation, closely related
problems, known and our results

Our results (Ageev, Kel'manov, Pyatkin, Khamidullin, Shenmaier, 2017)

1. Problem 1 is strongly NP-hard.

2. 1/2-approximation polynomial-time algorithm with running time

O(N2(q + logN)

.

example of an input set found subset
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2. Problem complexity

Problem 1A (Problem 1 in a property veri�cation form)

Input: a set Y = {y1, . . . , yN} of points from Rq, positive real A and
integer M.
Question: is there a subset C ⊂ Y of cardinality at least M, such that

F (C) ≤ A. (1)

Remind that the following problem (Problem 2 in a property veri�cation
form) belongs to the class of NP-complete problems in the strong sense.

Problem 2A - M-Variance (Problem 2 in a property veri�cation form)

Input: a set Y = {y1, . . . , yN} of points from Rq, a positive integer M,
and a positive real B.
Question: is there a subset C ⊂ Y of cardinality M such that

F (C) ≤ B.
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2. Problem complexity, NP-hardness

Note that the function F has the following property:

if C1 ⊆ C2, then F (C1) ≤ F (C2).

Therefore, if in the problem 1A the answer is positive, then there is a
subset of cardinality M satisfying the inequality (1).

Thus, problems 1A and 2A are equivalent and obviously we have the
following

Statement 1

The problem 1A is NP-complete in the strong sense.

It follows from statement 1 that Problem 1 is an NP-hard problem in the
strong sense, that is, it is not easier than Problem 2.
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3. Approximation algorithm

The idea of approximation algorithm

1. For each point y of the input set, a subset consisting of the maximum
number of closest to y (in the sense of Euclidean distance) points from
the input set is constructed such that the sum of the squares of the
distances from y to the points of the subset does not exceed a given
threshold (that is the fraction of the quadratic scatter of points of the
input set).

2. Among the found subsets the one with the largest cardinality is taken
as an output.
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3. Approximation algorithm

Algorithm A
Input: set Y and number α ∈ (0, 1).
Step 1. Compute the value A = α

∑
y∈Y ‖y − y(Y)‖2.

For each point y ∈ Y perform steps 2 and 3.
Step 2. Compute the distances from the point y to all points in Y and
sort the set Y in the nondecreasing order according to these distances.
Denote this sequence by y1, . . . , yN .

Step 3. Find the subsequence y1, . . . yM of maximum length such that

M∑
i=1

‖y − yi‖2 ≤ A.

De�ne the subset Cy = {y1 . . . , yM}.
Step 4. In the family {Cy | y ∈ Y} of admissible subsets constructed in
step 3 choose as the output CA any subset Cy of the largest cardinality.

Output: subset CA.

Alexander Kel'manov On some clustering problems 14 / 21



3. Approximation algorithm

To justify the accuracy bound for this algorithm, we need two facts.

Statement 2

Let a sequence 0 ≤ a1 ≤ . . . ≤ ak and a positive number β ≤ 1 be given.
Then, g(bkβc) ≤ βg(k), where g(i) = a1 + . . .+ ai , and g(0) = 0.

Proof. Let m = bkβc. Then, since the sequence ai does not decrease, we
have

g(k) = g(m) +
k∑

i=m+1

ai ≥ g(m) + (k −m)am+1

≥ g(m) +
k −m

m
g(m) = g(m)

k

m
≥ g(m)

β
.
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3. Approximation algorithm

Recall that in Problem 1,

F (C) =
∑
y∈C
‖y − y(C)‖2, C ⊆ Y ⊂ Rq.

Put
f (x ,Z) =

∑
y∈Z
‖y − x‖2, x ∈ Rq, Z ⊂ Rq.

The following statement is well-known

Lemma 1

Let z = 1
|Z|

∑
z∈Z z be the centroid of the �nite set Z ⊂ Rq, let a point

x ∈ Rq satisfy the condition ‖x − z‖ ≤ |z − z‖ for every z ∈ Z. Then

F (Z) ≤ f (x ,Z) ≤ 2F (Z).
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3. Approximation algorithm

Theorem 1

Algorithm �nds a 1/2-approximate solution of Problem 1 in
O(N2(q + logN) time.

Proof. Let C∗ be the cluster of the maximal cardinality (in Problem 1)
and y(C∗) be the centroid of C∗. Let y be the point from C∗ ⊆ Y, closest
to y(C∗).
Then, by Lemma 1 we have

f (y , C∗) ≤ 2F (C∗) ≤ 2A.

Further, let C = C∗ if |C∗| is even; let C = C∗ \ {y} otherwise. Note that
f (y , C) = f (y , C∗) in any case.
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3. Approximation algorithm

Proof of Theorem 1

In the conditions of Statement 2, let k = |C|, β = 1/2, and choose as ai ,
i = 1, . . . , k , the squares of the distances from point y to points yi ∈ C.
Note that g(k) = f (y , C) and bk/2c = k/2 because k is even.

Denote by C′ a cluster composed of the k/2 closest to y points from C.
Let C0 = C′ ∪ {y}. Then |C0| ≥ M∗/2, and, in this case,

f (y , C0) = g(k/2) ≤ g(k)/2 = f (y , C∗)/2 ≤ A

by Statement 2; i.e., C0 is an admissible solution of Problem 1 with a
cluster of cardinality M∗/2.

But then the condition M ≥ M∗/2 holds also for the cluster Cy
consisting of the maximal number M of the closest points to y and
satisfying the inequality f (y , Cy ) ≤ A.
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3. Approximation algorithm

Proof of Theorem 1

It remains to note that at Step 4 in the collection {Cy | y ∈ Y}, the
closest point y to the centroid of the optimal cluster, and the subset
corresponding to it, will be clearly considered. Consequently, the solution
found by the algorithm A contains at least M∗/2 elements, and is a
1/2-approximate solution of Problem 1.

Let us estimate the time complexity of the algorithm.

Step 1 requires O(qN) operations.

For each point y , Steps 2, 3 need O(qN + N logN) time, where
O(N logN) is the sorting complexity,

Step 4 is performed in O(N) time.

Therefore, the time complexity of the algorithm is O(N2(q + logN)).
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Numerical simulation. Examples

example of an input set, 1000

points

found subset, 303 points,

α = 0.01
found subset, 150 points,

α = 0.002
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Thank you for your attention!
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