Новосибирск, Россия, 30 мая – 4 июня 2011 г.

Международная конференция
«Современные проблемы прикладной математики и механики: теория, эксперимент и практика», посвященная 90-летию со дня рождения академика Н.Н. Яненко
№ гос. регистрации 0321101160, ISBN 978-5-905569-01-2

Атавин А.А.  

Об отражении прерывной волны от вертикальной стенки

     В рамках одномерного приближения теории мелкой воды рассматривается задача об отражении прерывной волны от твердой стенки. Пренебрегается непризматичностью русла, уклоном дна и влиянием трения. Рассматриваются регулярные русла, для которых критический расход является монотонно возрастающей функцией глубины. Процесс характеризуется четырьмя параметрами: глубиной течения перед и за фронтом прерывной волны, скоростью распространения волны и скоростью течения за фронтом волны (у стенки жидкость покоится). Два из этих параметров должны быть заданы, а два оставшихся однозначно определяются из соотношений на прерывной волне.
      Из 6 возможных комбинаций задания двух параметров из 4 наиболее интересны две:
1) заданы невозмущенная глубина и глубина за фронтом волны либо абсолютная или относительная высота набегающей волны,
2) заданы параметры за фронтом набегающей на стенку прерывной волны, необходимо определить глубину в отраженной волне и скорость ее распространения.
      Проводится анализ приемлемости известных приближенных решений. Обосновывается предпочтительность решения, полученного С.А. Христиановичем на основе замены соотношения на прерывной волне соотношением, строгим для волны понижения (для волн малой амплитуды ошибка составляет величину 3-го порядка малости относительно безразмерной амплитуды волны). В случае русла прямоугольного поперечного сечения на основе решения задачи о распаде граничного разрыва получены точные аналитические решения для волн произвольной амплитуды.

Файл тезисов: At-Nik-Nik-90.doc


К списку докладов
© 1996-2017, Институт вычислительных технологий СО РАН, Новосибирск